English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Planta 2007-Aug

Chain elongation of pectic beta-(1-->4)-galactan by a partially purified galactosyltransferase from soybean (Glycine max Merr.) hypocotyls.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Tomoyuki Konishi
Toshihisa Kotake
Yoichi Tsumuraya

Keywords

Abstract

Pectin is one of the major cell wall polysaccharides found in dicotyledonous plants. We have solubilized and partially purified a beta-(1-->4)-galactosyltransferase (GalT) involved in the synthesis of the beta-(1-->4)-galactan side chains of pectin. The enzyme protein was almost completely solubilized by mixing a crude microsomal preparation of etiolated 6-day-old soybean (Glycine max Merr.) hypocotyls with a detergent, Triton X-100 (0.75%, w/v), in buffer. The solubilized enzyme was partially purified by ion-exchange chromatography. The crude membrane-bound GalT transferred Gal from UDP-Gal onto 2-aminobenzamide (AB)-derivatized beta-(1-->4)-galactoheptaose (Gal(7)-AB), leading to the formation of Gal(8-11)-AB by attachment of a series of one to four galactosyl residues; this is similar to what has previously been observed for 2-aminopyridine-derivatized beta-(1-->4)-galactooligomer acceptors (Konishi et al. in Planta 218:833-842, 2004). The partially purified GalT, by contrast, was able to transfer more than 25 galactosyl residues and elongated the chains to about Gal(35)-AB, thus almost reaching the length (43-47 Gal units) of native beta-(1-->4)-galactan side chains found in pectic polysaccharides from soybean cotyledons (Nakamura et al. in Biosci Biotechnol Biochem 66:1301-1313, 2002). Enzyme activity increased with increasing chain length of beta-(1-->4)-galactooligomers and reached maximal activity at heptaose, whereas galactooligomers higher than heptaose showed lower acceptor efficiency.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge