English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Scientific Reports 2019-Feb

Changes in rhizosphere bacterial communities during remediation of heavy metal-accumulating plants around the Xikuangshan mine in southern China.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Dongchu Guo
Zhouzhou Fan
Shuyu Lu
Yongjiao
Xiaohong Nie
Fangping Tong
Xiawei Peng

Keywords

Abstract

Mining and smelting activities are the major sources of antimony (Sb) contamination. The soil around Xikuangshan (XKS), one of the largest Sb mines in the world, has been contaminated with high concentrations of Sb and other associated metals, and has attracted extensive scholarly attention. Phytoremediation is considered a promising method for removing heavy metals, and the diversity and structure of rhizosphere microorganisms may change during the phytoremediation process. The rhizosphere microbiome is involved in soil energy transfer, nutrient cycling, and resistance and detoxification of metal elements. Thus, changes in this microbiome are worthy of investigation using high-throughput sequencing techniques. Our study in Changlongjie and Lianmeng around XKS revealed that microbial diversity indices in the rhizospheres of Broussonetia papyrifera and Ligustrum lucidum were significantly higher than in bulk soil, indicating that plants affect microbial communities. Additionally, most of the bacteria that were enriched in the rhizosphere belonged to the Proteobacteria, Acidobacteria, Actinobacteria, and Bacteroidetes. In Changlongjie and Lianmeng, the diversity and abundance of the microbial community in the B. papyrifera rhizosphere were higher than in L. lucidum. In parallel, the soil pH of the B. papyrifera rhizosphere increased significantly in acidic soil and decreased significantly in near-neutral soil. Redundancy analyses indicated that pH was likely the main factor affecting the overall bacterial community compositions, followed by moisture content, Sb, arsenic (As), and chromium (Cr).

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge