English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Physiology 1992-Apr

Changes of intracellular pH due to repetitive stimulation of single fibres from mouse skeletal muscle.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
H Westerblad
D G Allen

Keywords

Abstract

1. The performance of skeletal muscle during repetitive stimulation may be limited by the development of an intracellular acidosis due to lactic acid accumulation. To study this, we have measured the intracellular pH (pHi) with the fluorescent indicator BCECF (2',7'-bis(carboxyethyl)-5(6)- carboxyfluorescein) during fatigue produced by repeated, short tetani in intact, single fibres isolated from the mouse flexor brevis muscle. 2. The pHi at rest was 7.33 +/- 0.02 (mean +/- S.E.M., n = 29, 22 degrees C). During fatiguing stimulation pHi initially went alkaline by about 0.03 units (maximum alkalinization after about ten tetani). Thereafter pHi declined slowly and at the end of fatiguing stimulation (tetanic tension reduced to 30% of the original; 0.3Po), pHi was only 0.063 +/- 0.011 units (n = 14) more acid than in control. 3. We considered three possible causes of acidosis being so small in fatigue: (i) a high oxidative capacity so that fatigue occurs without marked production of lactic acid; (ii) an effective transport of H+ or H+ equivalents out of the fibres; a high intracellular buffer power. 4. The oxidative metabolism was inhibited by 2 mM-cyanide in three fibres. After being exposed to cyanide for 5 min without stimulation, the tetanic tension was reduced to about 0.9 Po and pHi was alkaline by about 0.1 units. The fibres fatigued faster in cyanide and the pHi decline in fatigue was more than twice as large as that under control conditions. 5. Inhibition of Na(+)-H+ exchange with amiloride resulted in a slow acidification of rested fibres; resting pHi was not affected by either inhibition of HCO3(-)-Cl- exchange with DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid) or inhibition of the lactate transporter with cinnamate. 6. Fibres fatigued in cinnamate displayed a markedly larger acidification (approximately 0.4 pH units) and tension fell more rapidly than under control conditions; inhibition of Na(+)-H+ and HCO3(-)-Cl- exchange did not have any significant effect on fatigue. 7. The intracellular buffer power, assessed by exposing fibres to the weak base trimethylamine, was about 15 mM (pH unit)-1 in a HEPES-buffered solution (non-CO2 or intrinsic buffer power) and about 33 mM (pH unit)-1 in a bicarbonate-buffered solution. Somewhat higher values of the intrinsic buffer power was obtained from changes of the partial pressure of CO2 (PCO2) of the bath solution. Application of lactate or butyrate frequently gave an infinite buffer power, which indicates that powerful pH-regulating mechanisms operate in these cases.(ABSTRACT TRUNCATED AT 400 WORDS)

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge