English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Phytochemical Analysis

Characterisation of galloylated cyanogenic glucosides and hydrolysable tannins from leaves of Phyllagathis rotundifolia by LC-ESI-MS/MS.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Tan Hooi Poay
Ling Sui Kiong
Chuah Cheng Hock

Keywords

Abstract

BACKGROUND

Phyllagathis rotundifolia (Jack) Bl. (Melastomataceae) is a creeping herb found in Peninsular Malaysia and Sumatra. Traditionally, a decoction of the leaves is used in the treatment of malaria, fever and stomach ache.

OBJECTIVE

To provide ESI-MS(n) data which are applicable for chemical fingerprinting of P. rotundifolia to obviate laborious isolation and purification steps.

METHODS

The mass spectral data for the compounds isolated from the leaves of P. rotundifolia were obtained by liquid chromatography-electrospray ionisation tandem mass spectrometry.

RESULTS

The MS fragmentation patterns were obtained for galloylated cyanogenic glucosides based on prunasin (prunasin 6′‐O‐gallate 1, prunasin 2′,6′‐di‐O‐gallate 2, prunasin 3′,6′‐di‐O‐gallate 3, prunasin 4′,6′‐di‐O‐gallate 4, prunasin 2′,3′,6′‐tri‐Ogallate 5, prunasin 3′,4′,6′‐tri‐O‐gallate 6 and prunasin 2′,3′,4′,6′‐tetra‐O‐gallate 7), gallotannins (6‐O‐galloyl‐D‐glucose 8, 3,6‐di‐O‐galloyl‐D‐glucose 9, 1,2,3‐tri‐O‐galloyl‐β‐D‐glucose 10, 1,4,6‐tri‐O‐galloyl‐β‐D‐glucose 11, 3,4,6‐tri‐O‐galloyl‐D‐glucose 12, 1,2,3,6‐tetra‐O‐galloyl‐β‐D‐glucose 13 and 1,2,3,4,6‐penta‐O‐galloyl‐β‐D‐glucose 14), ellagitannins [6‐O‐galloyl‐2,3‐O‐(S)‐hexahydroxy‐diphenoyl‐D‐glucose 15, praecoxin B 16 and pterocarinin C 17], ellagic acid derivatives (3′‐O‐methyl‐3,4‐methylenedioxyellagic acid 4′‐O‐β‐D‐glucopyranoside 18 and 3,3′,4‐tri‐O‐methylellagic acid 4′‐O‐β‐D‐glucopyranoside 19) and gallic acid 20 that were isolated from the leaves of P. rotundifolia.

CONCLUSIONS

The ESI-MS(n) technique facilitates identification of galloylated cyanogenic glucosides, hydrolysable tannins and ellagic acid derivatives that were isolated from the leaves of P. rotundifolia. It yields MS(n) spectra that are useful for identification of these compounds in complex samples and permit more complete fingerprinting of plant materials.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge