English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Environmental Science and Pollution Research 2010-Mar

Characteristics of exhaust gas, liquid products, and residues of printed circuit boards using the pyrolysis process.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Hung-Lung Chiang
Cho-Ching Lo
Sen-Yi Ma

Keywords

Abstract

BACKGROUND

The pyrolytic method was employed to recycle metals and brominated compounds blended into printed circuit boards (PCBs).

METHODS

PCBs were crushed into pieces 4.0-4.8 mm in size, and the crushed pieces were pyrolyzed at temperatures ranging from 200 to 500 degrees C. The compositions of pyrolytic residues, liquid products, and exhaust were analyzed by inductively coupled plasma atomic emission spectrometer, inductively coupled plasma mass spectrometry, and gas chromatography-mass spectrometry. Pyrolytic exhaust was collected by an impinger system in an ice bath cooler to analyze the composition fraction of the liquid product, and uncondensable exhaust was collected for gas constituent analysis.

RESULTS

Phenol, methyl-phenol, and bromo-phenol were attributed mainly to the liquid product. Metal content was low in the liquid product. In addition, CO, CO(2), CH(4), and H(2) were the major components of pyrolytic exhaust.

CONCLUSIONS

Brominated and chlorinated compounds-i.e., dichloromethane, trans-1,2 dichloroethylene, cis-1,2 dichloroethylene, 1,1,1-trichloroethane, tetrachloromethane, bromophenol, and bromoform-could be high, up to the several parts per million (ppm) level. Low molecular weight volatile organic compounds (VOCs)-i.e., methanol, acetone, ethyl acetate, acrylonitrile, 1-butene, propene, propane, and n-butane-contributed a large fraction of VOCs. The concentrations of toluene, benzene, xylene, ethylbenzene, and styrene were in the ppm range.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge