English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology and Biochemistry 2008-Feb

Characterization and expression of a vacuolar Na(+)/H(+) antiporter gene from the monocot halophyte Aeluropus littoralis.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Gao-Hua Zhang
Qiao Su
Li-Jia An
Song Wu

Keywords

Abstract

Plant vacuolar Na(+)/H(+) antiporter plays an important role in salt tolerance. In order to understand the molecular basis of vacuolar Na(+)/H(+) antiporter responded to salinity and reveal a possible role of salt tolerance in monocots, a vacuolar Na(+)/H(+) antiporter gene (AlNHX) was isolated by reverse transcription-PCR and RNA ligase mediated rapid amplification of cDNA ends (RLM-RACE) based on the homology from Aeluropus littoralis (Gouan) Parl, a graminaceous halophyte. The AlNHX sequence contained 2706bp with an open read frame of 1623bp and the deduced transcripts encoding 540 amino acids shared a high homology with those putative vacuolar Na(+)/H(+) antiporters of higher plants. AlNHX was predicted containing ten putative hydrophobic regions, which was different with AtNHX1 and OsNHX1. DNA gel blot analysis indicated that there were two or three copies of AlNHX in the A. littoralis genome. The increased transcript levels of AlNHX were much higher in roots than that in shoots under salt stress. In addition, overexpression of AlNHX in tobacco conferred high salt tolerance to the transgenic plants. The analysis of ion contents indicated that under high salt stress for one month, the transgenic plants compartmentalized more Na(+) in the roots and kept a relative high K(+)/Na(+) ratio in the leaves compared with wild-type plants.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge