English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Clinical Investigation 1989-May

Characterization of MB creatine kinase isoform conversion in vitro and in vivo in dogs.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
J J Billadello
H L Fontanet
A W Strauss
D R Abendschein

Keywords

Abstract

Time-dependent removal of the COOH-terminal lysine residue from each subunit of tissue MM creatine kinase by plasma carboxypeptidase N produces two additional isoforms that are readily separated, thereby permitting sensitive, early detection of acute myocardial infarction. Only two isoforms of MB creatine kinase have been detected in plasma leading to speculation that the COOH-terminal lysine on the B subunit is resistant to hydrolysis. To define the biochemical changes resulting in MB creatine kinase isoform conversion, we incubated highly purified MB creatine kinase from canine myocardium with plasma carboxypeptidase N. Quantitative anion-exchange chromatography of incubation mixtures and serial plasma samples from dogs subjected to coronary occlusion revealed a second, more acidic form evolved with time that was separated from the tissue isoform. Cyanogen bromide digestion of the two isoforms followed by amino acid sequencing of COOH-terminal peptides showed that MB creatine kinase undergoes removal of the COOH-terminal lysine residue from both M and B subunits. An intermediate form lacking lysine on the M subunit was delineated during incubations by the combined use of anion-exchange chromatography and conventional electrophoretic techniques. Thus, sequential cleavage of lysine from subunits of MB creatine kinase produces an intermediate isoform that has not been detected previously because of difficulties separating it from the tissue and fully converted isoforms.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge