English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Agricultural and Food Chemistry 2016-Nov

Characterization of Seed Storage Proteins of Several Perennial Glycine Species.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Bo Song
Nathan W Oehrle
Shanshan Liu
Hari B Krishnan

Keywords

Abstract

Perennial Glycine species, distant relatives of soybean, have been recognized as a potential source of new genetic diversity for soybean improvement. The subgenus Glycine includes around 30 perennial species, which are well-adapted to drought conditions and possess resistance to a number of soybean pathogens. In spite of the potential of the perennial Glycine species for soybean improvement, very little is known about their storage proteins and their relationship with cultivated soybean seed proteins. We have examined the seed protein composition of nine perennial Glycine species by one- and two-dimensional (1-D and 2-D) gel electrophoresis. The relationship between cultivated soybean and perennial soybean seed proteins was examined by immunoblot analyses using antibodies raised against G. max β-conglycinin, glycinin A3 subunit, lipoxygenase, leginsulin, Kunitz trypsin inhibitor, and Bowman-Birk protease inhibitor. Additionally, we have measured the trypsin and chymotrypsin inhibitor activities from cultivated soybean and perennial Glycine species and have found marked differences between them. Our 2-D gel and immunoblot analyses demonstrate significant differences in the protein composition and size heterogeneities of the 7S and 11S seed storage proteins of soybean and perennial Glycine species. Perennial Glycine species accumulated a 45 kDa protein that was not detected in G. max and G. soja. This unique 45 kDa protein was immunologically related to the A3 glycinin subunit of G. max. The results of our studies suggest that even though the seed proteins of wild perennial Glycine species and G. max are immunologically related, their genes have diverged from each other during the course of evolution.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge