English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Gene 2007-Aug

Characterization of a multifunctional inositol phosphate kinase from rice and barley belonging to the ATP-grasp superfamily.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Lone Josefsen
Lisbeth Bohn
Mikael Blom Sørensen
Søren K Rasmussen

Keywords

Abstract

OsIpk and HvIpk, inositol phosphate kinases, were cloned from rice (Oryza sativa L. var. indica, IR64) and barley (Hordeum vulgare) respectively. Sequence alignment showed that they belong to the ATP-grasp family, which includes inositol 1,3,4-trisphosphate 5/6-kinase from humans and Arabidopsis. Residues that are binding sites for ATP and coordinate magnesium in absence or presence of inositol phosphate are conserved and in total 23 residues are invariant among the twelve aligned inositol phosphate kinases. The genes were heterologously expressed in Escherichia coli and kinase activity assays with 17 different isomers of inositol mono-/di-/tri-/tetra-/pentaphosphate as well as phytate were performed. The strongest activity for both kinases was observed with Ins(3,4,5,6)P(4), which candidates as the primary substrate for these kinases in plants. Several species-specific differences between the two recombinant Ipks were observed. Rice OsIpk showed detectable kinase activity towards eight different substrates, whereas barley HvIpk showed kinase activity with all the substrates including inositol mono- and bisphosphates. HvIpk showed 3-kinase activity towards the Ins(1,4,5)P(3) substrate and it also interconverted the two substrates Ins(1,3,4,5)P(4) and Ins(1,3,4,6)P(4) by isomerase activity, which was not observed for the rice homologue. Both OsIpk and HvIpk had no detectable 2-kinase activity. Furthermore, the two Ipks showed phosphatase activity towards several inositol phosphates. Expression analysis by RT-PCR demonstrated that the Ipk gene was equally expressed in different tissues and developmental stages. Taken together, these results show that the Ipk kinase plays a significant role in the inositol phosphate interacting network in plants.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge