English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Ethnopharmacology 2017-May

Characterization of a protein-bound polysaccharide from Herba Epimedii and its metabolic mechanism in chronic fatigue syndrome.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Aiping Chi
Zhimei Shen
Wenfei Zhu
Yuliang Sun
Yijiang Kang
Fei Guo

Keywords

Abstract

OBJECTIVE

Herba Epimedii is one of the famous Traditional Chinese Medicines used to treat the chronic fatigue syndrome (CFS). The polysaccharides are the main active components in H. epimedii. The aim of this study is to discover the therapeutic effect and metabolic mechanism of H. epimedii polysaccharides against CFS.

METHODS

The polysaccharide conjugates named HEP2-a were isolated from the leaves of H. epimedii using a water extraction method, and the general physicochemical properties of HEP2-a were analysed. In addition, a CFS rat model was established, and then, urinary metabonomic studies were performed using gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) in combination with multivariate statistical analysis.

RESULTS

The physicochemical properties revealed that HEP2-a had an average molecular weight of 13.6×104Da and consisted of mannose (4.41%), rhamnose (5.43%), glucose (31.26%), galactose (27.07%), arabinose (23.43%), and galacturonic acid (8.40%). The amino acids in HEP2-a include glutamate, cysteine, leucine, tyrosine, lysine, and histidine. Molecular morphology studies revealed many highly curled spherical particles with diameters of 5-10µm in solids and 100-200nm for particles in water. Five metabolites in the HEP2-a group were oppositely and significantly changed compared to the CFS model group.

CONCLUSIONS

Two metabolic pathways were identified as significant metabolic pathways involved with HEP2-a. The therapeutic effects of HEP2-a on CFS were partially due to the restoration of these disturbed pathways.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge