English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Plant-Microbe Interactions 1997-Jan

Characterization of a salicylic acid-insensitive mutant (sai1) of Arabidopsis thaliana, identified in a selective screen utilizing the SA-inducible expression of the tms2 gene.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
J Shah
F Tsui
D F Klessig

Keywords

Abstract

Salicylic acid (SA) plays an important signaling role in the resistance of many plants to pathogen invasion. Increases in endogenous SA levels have been associated with the hypersensitive response as well as systemic acquired resistance (SAR). SA also induces the expression of a subset of the pathogenesis-related (PR) genes. However, relatively little is known about the events occurring subsequent to SA accumulation during a resistance response. In order to identify mutations in components of the SA signal transduction pathway, we have developed a genetic screen in Arabidopsis thaliana that utilizes the Agrobacterium tumefaciens tms2 gene as a counter-selectable marker. SA-inducible expression of the tms2 gene from the tobacco PR-1a promoter confers sensitivity to alpha-naphthalene acetamide (alpha-NAM), resulting in inhibition of root growth in germinating transgenic Arabidopsis seedlings. Mutants in which root growth is insensitive to alpha-NAM have been selected from this PR-1a:tms2 transgenic line with the expectation that a subset will lack a regulatory component downstream of SA. The sail mutant so identified expressed neither the PR-1a:tms2 transgene nor the endogenous Arabidopsis PR-1, PR-2, and PR-5 genes in response to SA. These genes also were not induced in sai1 by 2,6-dichloroisonicotinic acid (INA) or benzothiadiazole (BTH), two chemical inducers of SAR. As expected of a mutation acting downstream of SA, sai1 plants accumulate SA and its glucoside in response to infection with an avirulent pathogen and are more susceptible to this avirulent pathogen than the wild-type parent. sai1 is allelic to npr1, a previously identified SA-noninducible mutation. The recessive nature of the noninducible sai1 mutation suggests that the wild-type SAI1 gene acts as a positive regulator in the SA signal transduction pathway.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge