English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Acta Biochimica Polonica 2018

Characterization of an acidic α-galactosidase from hemp (Cannabis sativa L.) seeds and its application in removal of raffinose family oligosaccharides (RFOs).

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Weiwei Zhang
Fang Du
Guoting Tian
Yongchang Zhao
Hexiang Wang
Tzi Bun Ng

Keywords

Abstract

An acidic α-galactosidase designated as hemp seed α-galactosidase (HSG) was purified from hemp (Cannabis sativa L.) seeds. By means of chromatographic procedures which involved chromatography on the cation-exchangers CM-cellulose and SP-Sepharose, chromatography on the anion-exchangers DEAE-cellulose and Q-Sepharose, and gel filtration on Superdex 75 using fast protein liquid chromatography, HSG was purified to electrophoretic homogeneity. Results of SDS-PAGE and gel filtration on FPLC Superdex 75 revealed that the enzyme was a monomeric protein with a molecular weight of 38 kDa. Sequences of the inner peptides of the α-galactosidase obtained by MALDI-TOF-MS showed that HSG was a novel α-galactosidase since there was a little similarity to the majority of α-galactosidases recorded in the literature. A pH of 3.0 and a temperature of 50°C were optimal for the activity of the enzyme. The activity of HSG was inhibited by the chemical modification with N-bromosuccinimide (NBS) reagent. HSG contained 16 tryptophan residues and two tryptophan residues on the surface, which were crucial to the α-galactosidase activity. The heavy metal ions Cd2+, Cu2+, Hg2+ and Zn2+ inhibited its activity. The Km and Vmax for the hydrolysis of pNPGal (4-nitrophenyl α-D-galactopyranoside) were respectively 0.008 mM and 68 μM min-1 mg-1. HSG also catalyzed the hydrolysis of raffinose and other natural substrates. Hence the α-galactosidase possesses a tremendous potential for food and feed industries in the elimination of indigestible oligosaccharides from leguminous products.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge