English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Botanical Studies 2013-Dec

Characterization of differential expression and leader intron function of Arabidopsis atTOC159 homologous genes by transgenic plants.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Yu-Shan Liu
Chih-Wen Sun

Keywords

Abstract

BACKGROUND

Accurate import of thousands of nuclear-encoded proteins is an important step in plastid biogenesis. However, the import machinery of cytosolic precursor proteins to plastids relies on the Toc and Tic (translocons on the outer envelope and inner envelope membrane of chloroplasts) complexes. Toc159 protein was identified in pea (Pisum sativum) as a major receptor for the precursor proteins. In Arabidopsis thaliana, four psToc159 homologs are identified, termed atToc159, atToc132, atToc120 and atToc90. The expression of these protein-encoding genes has to be properly regulated, because their gene products must be correctly integrated to appropriate apparatus to perform their functions.

RESULTS

In order to elucidate the regulatory mechanisms of atTOC159 homologous gene expression, transgenes containing various lengths of the upstream regulatory sequences of atTOC159/atTOC132/atTOC120/atTOC90 and GUS coding sequence were transferred to wild type Arabidopsis. In accordance with the analysis of GUS activity in these transgenic plants at various developmental stages, these homologous genes had distinct expression patterns. AtTOC159 and atTOC90 are preferentially expressed in above-ground tissues, such as cotyledons and leaves. In mature roots, atTOC159 and atTOC132 are expressed at higher levels, while atTOC120 and atTOC90 are expressed at the basal level. All four genes have increased expression level during flower and fruit development, particularly a remarkably high expression level of atTOC159 in later stage of fruit development. Furthermore, leader intron in the 5' UTR induces the expression level of atTOC159 members in a tissue-specific manner. This is able to up-regulate the atTOC120 expression in roots/leaves/flowers, and the atTOC90 expression in cotyledons/leaves/anthers.

CONCLUSIONS

The differential expression of atTOC159 gene members is essential during plastid development, because proper atToc159 isoforms are required to import distinct proteins to the plastids of different tissues.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge