English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochemical Pharmacology 1996-May

Characterization of novel indenoindoles. Part I. Structure-activity relationships in different model systems of lipid peroxidation.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
C Westerlund
A M Ostlund-Lindqvist
M Sainsbury
H G Shertzer
P O Sjöquist

Keywords

Abstract

Structure-activity relationships are presented for some representative compounds from a novel series of potent inhibitors of lipid peroxidation. The compounds are indenoindole derivatives with oxidation potentials in organic solvents of between 0.2 and 1.5 V. Two of these compounds, cis-5,5a,6,10b-tetrahydro-9-methoxy-7-methylindeno[2,1-b]indole (H 290/51) with an oxidation potential of 0.32 V and cis-4b,5,9b,10- tetrahydro-8-methoxy-6-methylindeno[1,2-b]indole (H 290/30) with an oxidation potential of 0.30 V, have been tested more extensively and compared with reference compounds in several pharmacological models of lipid peroxidation. The inhibitory potencies (pIC50) of the compounds in respect to Fe/Ascorbate-induced production of thiobarbituric acid-reactive substances (TBARS) in a suspension of purified soybean lecithin were calculated. These data are 8.2 for H 290/51; 8.0 for H 290/30; 5.6 for vitamin E; and 6.6 for butylated hydroxytoluene (BHT). In isolated rat renal tissue subjected to hypoxia and reoxygenation, the potency for inhibition of TBARS formation is 6.9 for H 290/51, 6.9 for H 290/30, and <5 for vitamin E. In oxidative modification of low-density lipoproteins (LDL) induced by mouse peritoneal macrophages, the corresponding pIC50 values for TBARS inhibition for each compound are: 8.7, 8.3, <5, and 6.9, respectively. It is concluded that the synthetic indenoindoles are potent antioxidants. The results suggest that indenoindoles such as H 290/51 and H 290/30 could be useful as therapeutic agents in pathophysiological situations where lipid peroxidation plays an important role.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge