English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Virus Research 2017-Jan

Characterization of small interfering RNAs derived from Rice black streaked dwarf virus in infected maize plants by deep sequencing.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Mingjun Li
Yongqiang Li
Zihao Xia
Dianping Di
Aihong Zhang
Hongqin Miao
Tao Zhou
Zaifeng Fan

Keywords

Abstract

Rice black streaked dwarf virus (RBSDV) is the casual agent of maize rough dwarf disease, which frequently causes severe yield loss in China. However, the interaction between RBSDV and maize plants is largely unknown. RNA silencing is a conserved mechanism against viruses in plants. To understand the antiviral RNA interfering response in RBSDV-infected plants, the profile of virus-derived small interfering RNAs (vsiRNAs) from RBSDV in infected maize plants was obtained by deep sequencing in this study. Our data showed that vsiRNAs, accumulated preferentially as 21- and 22-nucleotide (nt) species, were mapped against all 10 genomic RNA segments of RBSDV and derived almost equally overall from both positive and negative strands, while there were significant differences in the accumulation level of vsiRNAs from segments 2, 4, 6, 7 and 10. The vsiRNAs (21 and 22 nt) generated from each segment of RBSDV genome had a 5'-terminal nucleotide bias toward adenine and uracil. The single-nucleotide resolution maps showed that RBSDV-derived siRNAs preferentially distributed in the 5'- or 3'-terminal regions of several genomic segments. In addition, our results showed that the mRNA levels of some components involved in antiviral RNA silencing pathway were differentially modified during RBSDV infection. Among them, the accumulation levels of ZmDCL1, ZmDCL2, ZmDCL3a, ZmAGO1a, ZmAGO1b, ZmAGO2a, ZmAGO18a and ZmRDR6 mRNAs were significantly up-regulated, while those of ZmDCL3b, ZmDCL4 and ZmAGO1c mRNAs showed no obvious changes in RBSDV-infected maize plants.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge