English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Applied Microbiology 2010-Jan

Characterization of some culture factors affecting oxalate degradation by the mycoparasite Coniothyrium minitans.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
L Ren
G Li
D Jiang

Keywords

Abstract

OBJECTIVE

To find possible approaches to utilize the mechanism of oxalate degradation by Coniothyrium minitans (Cm) in controlling the plant pathogen Sclerotinia sclerotiorum (Ss).

RESULTS

Differences in oxalate degradation by different Cm strains and effects of the initial oxalate concentration, ambient pH and nutrient factors on mycelial growth and oxalate degradation by Cm were studied in shaken cultures. Results showed that two wild-type Cm strains, Chy-1 and ZS-1, did not differ in oxalate degradation in modified potato dextrose broth (mPDB) amended with oxalic acid (OA). Cm could grow in mPDB amended with sodium oxalate (SO-mPDB) at pH 6.5 or with ammonium oxalate (AO-PDB) at pH 6.2, but oxalate degradation was very low; oxalate degradation was greatly enhanced in SO- or AO-mPDB with pH being lowered to 2.8-2.9. Similarly, oxalate degradation was higher than 90% in OA-amended mPDB at pH 4.4 but was reduced to be <22% at pH 7.0. Five carbon sources and three nitrogen sources investigated and nutrients from mycelia and sclerotia of Ss were favorable for the growth of Cm and OA degradation by Cm.

CONCLUSIONS

Cm can degrade oxalate under acidic pH. Exudates from mycelia or sclerotia of Ss may serve as nutrients for Cm mycelial growth and degradation of oxalate secreted by Ss.

CONCLUSIONS

The finding of oxalate degradation laid a foundation for mining-related genes in Cm for engineering plant resistance against Ss. Elucidation of the importance of acidic pH and nutrients from Ss in oxalate degradation by Cm will help to understand the interaction between Cm and Ss.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge