English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Immunological Methods 1995-Jan

Characterization of the apoptotic effects of human tumor necrosis factor: development of highly rapid and specific bioassay for human tumor necrosis factor and lymphotoxin using human target cells.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
M Higuchi
S Singh
B B Aggarwal

Keywords

Abstract

Currently available bioassays for most cytokines require several days and therefore must be performed under sterile conditions. In this report we describe a bioassay for tumor necrosis factor (TNF) and lymphotoxin (LT) that is extremely rapid and specific and does not require sterile conditions. Using tritiated thymidine release, we could conveniently monitor degradation of DNA into small fragments following the incubation of human myelogenous leukemia ML-1a cells with TNF. The assay showed that TNF-dependent DNA fragmentation was potentiated by cycloheximide and occurred within 90 min. Treatment of cells to TNF lead to apoptosis as indicated by thymidine release, DNA laddering on agarose gels and morphological alterations. Under these conditions, plasma membrane were not damaged as indicated by lack of chromium release. This effect was linear with TNF concentration. This assay had high throughput, did not require sterile conditions, could be carried out in the absence of serum, and was sensitive only to TNF and LT and not to interferon (IFN)-alpha, IFN-beta, IFN-gamma, transforming growth factor beta, interleukin-4, leukemia inhibitory factor and granulocyte-monocyte colony stimulating factor; all cytokines known to inhibit different cell types. Besides detection of TNF in biological fluids, this assay may prove useful for the identification of novel inhibitors of TNF action.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge