English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Neurophysiology 2007-Sep

Characterization of the heteromeric potassium channel formed by kv2.1 and the retinal subunit kv8.2 in Xenopus oocytes.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Gábor Czirják
Zsuzsanna E Tóth
Péter Enyedi

Keywords

Abstract

Kv8.2 (KCNV2) subunits do not form homotetrameric potassium channels, although they coassemble with Kv2.1 to constitute functional heteromers. High expression of Kv8.2 was reported in the human retina and its mutations were linked to the visual disorder "cone dystrophy with supernormal rod electroretinogram." We detected abundant Kv8.2 expression in the photoreceptor layer of mouse retina, where Kv2.1 is also known to be present. When the two subunits were coexpressed in Xenopus oocytes in equal amounts, Kv8.2 abolished the current of Kv2.1. If the proportion of Kv8.2 was reduced then the current of heteromeric channels emerged. Kv8.2 shifted the steady-state activation of Kv2.1 to more negative potentials, without affecting the voltage dependence of inactivation. This gave rise to a window current within the -40 to -10 mV membrane potential range. Ba2+ inhibited the heteromeric channel and shifted its activation to more positive potentials. These electrophysiological and pharmacological properties resemble those of the voltage-gated K+ current (named I Kx) described in amphibian retinal rods. Furthermore, oocytes expressing Kv2.1/Kv8.2 developed transient hyperpolarizing overshoots in current-clamp experiments, whereas those expressing only Kv2.1 failed to do so. Similar overshoots are characteristic responses of photoreceptors to light flashes. We demonstrated that Kv8.2 G476D, analogous to a disease-causing human mutation, eliminated Kv2.1 current, if the subunits were coexpressed equally. However, Kv8.2 G476D did not form functional heteromers under any conditions. Therefore we suggest that the custom-tailored current of Kv2.1/Kv8.2 functionally contributes to photoreception, and this is the reason that mutations of Kv8.2 lead to a genetic visual disorder.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge