English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
BMC Plant Biology 2009-May

Characterization of two Arabidopsis thaliana acyltransferases with preference for lysophosphatidylethanolamine.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Kjell Stålberg
Ulf Ståhl
Sten Stymne
John Ohlrogge

Keywords

Abstract

BACKGROUND

Two previously uncharacterized Arabidopsis genes that encode proteins with acyltransferase PlsC regions were selected for study based on their sequence similarity to a recently identified lung lysophosphatidylcholine acyltransferase (LPCAT). To identify their substrate specificity and biochemical properties, the two Arabidopsis acyltransferases, designated AtLPEAT1, (At1g80950), and AtLPEAT2 (At2g45670) were expressed in yeast knockout lines ale1 and slc1 that are deficient in microsomal lysophosphatidyl acyltransferase activities.

RESULTS

Expression of AtLPEAT1 in the yeast knockout ale1 background exhibited strong acylation activity of lysophosphatidylethanolamine (LPE) and lysophosphatidate (LPA) with lower activity on lysophosphatidylcholine (LPC) and lysophosphatidylserine (LPS). AtLPEAT2 had specificities in the order of LPE > LPC > LPS and had no or very low activity with LPA. Both acyltransferases preferred 18:1-LPE over 16:0-LPE as acceptor and preferred palmitoyl-CoA as acyl donor in combination with 18:1-LPE. Both acyltransferases showed no or minor responses to Ca2+, despite the presence of a calcium binding EF-hand region in AtLPEAT2. AtLPEAT1 was more active at basic pH while AtLPEAT2 was equally active between pH 6.0 - 9.0.

CONCLUSIONS

This study represents the first description of plant acyltransferases with a preference for LPE. In conclusion it is suggested that the two AtLPEATs, with their different biochemical and expression properties, have different roles in membrane metabolism/homoeostasis.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge