English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
European Journal of Immunology 1997-Dec

Characterizing immunodominant and protective influenza hemagglutinin epitopes by functional activity and relative binding to major histocompatibility complex class II sites.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
E Rajnavölgyi
A Horváth
P Gogolák
G K Tóth
G Fazekas
M Fridkin
I Pecht

Keywords

Abstract

In the present study the analysis of functional activity and major histocompatibility complex (MHC) binding of two adjacent MHC class II-restricted epitopes, located in the C-terminal 306-329 region of human influenza A virus hemagglutinin 1 subunit (HA1) conserved with subtype sequences and not affected by antigenic drift, was undertaken to explore the hierarchy of local immunodominance. The functional activity of two T cell hybridomas of the memory/effector Th1 phenotype in combination with in vivo immunization studies provided a good tool for investigating the functional characteristics of the T cell response. The in vitro binding assays performed with a series of overlapping, N-terminal biotinylated peptides covering the 306-341 sequence enabled us to compare the relative binding efficiency of peptides, comprising two distinct epitopes of this region, to I-Ed expressed on living antigen-presenting cells. Our studies revealed that (i) immunization of BALB/c mice with the 306-329 H1 or H2 peptides resulted in the activation and proliferation of T cells recognizing both the 306-318 and the 317-329 epitopes, while the 306-329 H3 peptide elicits predominantly 306-318-specific T cells, (ii) the 317-329 HA1 epitope of the H1 and H2 but not the H3 sequence is recognized by T cells and is available for recognition not only in the 317-329 peptide but also in the extended 306-329 or 306-341 peptides, (iii) the 306-318 and the 317-329 hemagglutinin peptides encompassing the H1, H2 but not the H3 sequence bind with an apparently similar affinity to and therefore compete for I-Ed binding sites, and (iv) the 317-341, the 317-329 peptides and their truncated analogs show subtype-dependent differences in MHC binding and those with lower binding capacity represent the H3 subtype sequences. These results demonstrate that differences in the binding capacity of peptides comprising two non-overlapping epitopes located in the C-terminal 306-329 region of HA1 of all three subtype-specific sequences to MHC class II provide a rationale for the local and also for the previously observed in vivo immunodominance of the 306-318 region over the 317-329 epitope in the H3 but not in the H1 or H2 sequences. In good correlation with the results of the binding and functional inhibition assays, these data demonstrate that in the H1 and H2 subtypes both regions are available for T cell recognition, they compete for the same restriction element with an apparently similar binding efficiency and, therefore, function as co-dominant epitopes. Due to the stabilizing effect of the fusion peptide, peptides comprising the 306-341 or 317-341 H1 sequences are highly immunogenic and elicit a protective immune response which involves the production of antibodies and interleukin-2 and tumor necrosis factor producing effector Th1 cells both directed against the 317-329 region. Based on the similarity of the I-Ed and HLA-DR1 peptide binding grooves and motifs, these results suggest that amino acid substitutions inserted to the H3 subtype sequence during viral evolution can modify the relative MHC binding capacity and invert the local hierarchy of immunodominance of two closely situated epitopes that are able to bind to the same MHC class II molecule.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge