English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Planta 1999-Jul

Chemical analysis and immunolocalisation of lignin and suberin in endodermal and hypodermal/rhizodermal cell walls of developing maize (Zea mays L.) primary roots.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard

Keywords

Abstract

The composition of suberin and lignin in endodermal cell walls (ECWs) and in rhizodermal/hypodermal cell walls (RHCWs) of developing primary maize (Zea mays L.) roots was analysed after depolymerisation of enzymatically isolated cell wall material. Absolute suberin amounts related to root length significantly increased from primary ECWs (Casparian strips) to secondary ECWs (suberin lamella). During further maturation of the endodermis, reaching the final tertiary developmental state characterised by the deposition of lignified secondary cell walls (u-shaped cell wall deposits), suberin amounts remained constant. Absolute amounts of lignin related to root length constantly increased throughout the change from primary to tertiary ECWs. The suberin of Casparian strips contained high amounts of carboxylic and 2-hydroxy acids, and differed substantially from the suberin of secondary and tertiary ECWs, which was dominated by high contents of omega-hydroxycarboxylic and 1,omega-dicarboxylic acids. Furthermore, the chain-length distribution of suberin monomers in primary ECWs ranged from C(16) to C(24), whereas in secondary and tertiary ECWs a shift towards higher chain lengths (C(16) to C(28)) was observed. The lignin composition of Casparian strips (primary ECWs) showed a high syringyl content and was similar to lignin in secondary cell walls of the tertiary ECWs, whereas lignin in secondary ECWs contained higher amounts of p-hydroxyphenyl units. The suberin and lignin compositions of RHCWs rarely changed with increasing root age. However, compared to the suberin in ECWs, where C(16) and C(18) were the most prominent chain lengths, the suberin of RHCWs was dominated by the higher chain lengths (C(24) and C(26)). The composition of RHCW lignin was similar to that of secondary-ECW lignin. Using lignin-specific antibodies, lignin epitopes were indeed found to be located in the Casparian strip. Surprisingly, the mature suberin layers of tertiary ECWs contained comparable amounts of lignin-like epitopes.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge