English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Chemical Physics 2019-Mar

Chemical bonding and nonadiabatic electron wavepacket dynamics in densely quasi-degenerate excited electronic state manifold of boron clusters.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Yasuki Arasaki
Kazuo Takatsuka

Keywords

Abstract

Formation of chemical bonds is theoretically discerned by the presence of static nuclear configuration on a potential energy surface given within the Born-Oppenheimer framework. We here study dynamical chemical bonding for molecules residing in the electronic excited states that are in a densely quasi-degenerate electronic state manifold and thereby keep undergoing extremely frequent nonadiabatic transitions. For this type of the states, the notion of global potential energy surfaces based on the adiabatic representation loses the usual sense. Nonetheless, chemical bonding exists and associated chemical reactions certainly proceed, for which we call chemistry without potential surfaces. As such, we investigate the highly excited states of boron clusters, which have extraordinarily long lifetimes with neither ionization nor dissociation. The dynamical chemical bonds keep rearranging themselves without converging to a static structure, the vivid electron dynamics of which is tracked by means of the nonadiabatic electron wavepacket dynamics theory. To characterize the dynamical bonding theoretically, we propose the notion of hyper-resonance.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge