English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochemistry 2014-Jan

Chemical mechanism of glycerol 3-phosphate phosphatase: pH-dependent changes in the rate-limiting step.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Gérald Larrouy-Maumus
Geoff Kelly
Luiz Pedro Sório de Carvalho

Keywords

Abstract

The halo-acid dehalogenase (HAD) superfamily comprises a large number of enzymes that share a conserved core domain responsible for a diverse array of chemical transformations (e.g., phosphonatase, dehalogenase, phosphohexomutase, and phosphatase) and a cap domain that controls substrate specificity. Phosphate hydrolysis is thought to proceed via an aspartyl-phosphate intermediate, and X-ray crystallography has shown that protein active site conformational changes are required for catalytic competency. Using a combination of steady-state and pre-steady-state kinetics, pL-rate studies, solvent kinetic isotope effects, (18)O molecular isotope exchange, and partition experiments, we provide a detailed description of the chemical mechanism of a glycerol 3-phosphate phosphatase. This phosphatase has been recently recognized as a rate-limiting factor in lipid polar head recycling in Mycobacterium tuberculosis [Larrouy-Maumus, G., et al. (2013) Proc. Natl. Acad. Sci. 110 (28), 11320-11325]. Our results clearly establish the existence of an aspartyl-phosphate intermediate in this newly discovered member of the HAD superfamily. No ionizable groups are rate-limiting from pH 5.5 to 9.5, consistent with the pK values of the catalytic aspartate residues. The formation and decay of this intermediate are partially rate-limiting below pH 7.0, and a conformational change preceding catalysis is rate-limiting above pH 7.0.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge