English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Rapid Communications in Mass Spectrometry 2017-Nov

Chemical metabolome assay by high-resolution Orbitrap mass spectrometry and assessment of associated antitumoral activity of Actinocephalus divaricatus.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Ana C Zanatta
Angela Mari
Milena Masullo
Iracilda Zeppone Carlos
Wagner Vilegas
Sonia Piacente
Lourdes Campaner Dos Santos

Keywords

Abstract

BACKGROUND

Actinocephalus divaricatus (Eriocaulaceae) is an important source of income for rural communities as it is sold as an ornamental plant. To date, no investigation has been conducted concerning the chemical composition and biological studies of the aerial parts of A. divaricatus.

METHODS

The methanolic extract of the aerial parts of this species was chemically characterized. We applied an analytical dereplication approach based on Liquid Chromatography coupled to High-Resolution Orbitrap Mass Spectrometry in order to develop, identify and define rapidly the metabolite fingerprint of the aerial parts of A. divaricatus. Biological in vitro antitumor tests were undertaken using breast and lung cell lines of mice and humans.

RESULTS

High-Resolution Mass Spectrometry (HRMS) allowed the fast determination of 30 compounds, which comprised three different classes of compounds: naphthopyranones, flavonoids and saponins. Chromatographic fractionation of the crude methanolic extract validated these results, since it led to the isolation of compounds belonging to the aforementioned classes of compounds, including new acyl glycosylated flavonoids (6-hydroxy-7-methoxyquercetin-3-O-(2"-O-acetyl)-β-D-glucopyranoside and 6-hydroxy-7-methoxyquercetin-3-O-(6"-O-acetyl)-β-D-glucopyranoside), which were fully characterized by Nuclear Magnetic Resonance and Mass Spectrometry experiments, and a known triterpenic saponin (3-O-β-D-glucuronopyranosyl-30-norolean-12,20(29)-dien-28-O-β-D-glucopyranosyl ester). Biological assays indicated that the methanolic extract of the capitula exhibited the best in vitro cytotoxicity against MCF7 cells (human breast cancer).

CONCLUSIONS

The HRMS technique enabled us to identify several classes of compounds. In addition, saponins were identified for the first time in plants belonging to the Eriocaulaceae family. Thus, the essential contribution of this work lies in the new elements it brings to the taxonomic discussion which the Actinocephalus genus as a distinct genus of the Paepalanthus. The results obtained show that the methanolic extract of the capitula could be a promising source of bioactive fractions and/or compounds that may contribute towards breast cancer treatment.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge