English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
ACS Combinatorial Science 2019-Mar

Chemo-Diversification of Plant Extracts Using a Generic Bromination Reaction and Monitoring by Metabolite Profiling.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Davide Righi
Laurence Marcourt
Alexey Koval
Verena Ducret
Léonie Pellissier
Alice Mainetti
Vladimir Katanaev
Karl Perron
Jean-Luc Wolfender
Emerson Queiroz

Keywords

Abstract

A generic procedure for direct bromination of polyphenol in crude plant extracts was developed to generate multiple "unnatural" halogenated natural products for further bioassay evaluation. To better control the halogenation procedure, the bromination was optimized with a flavonoid standard, and the reactions were monitored by high-performance liquid chromatography photometric diode array coupled to the evaporative light scattering detection (ELSD). ELSD detection was successfully used for a relative yield estimation of the compounds obtained. From the halogenation of hesperitin (11), five brominated compounds were obtained. After optimization, the reaction was successfully applied to the methanolic extract of Citrus sinensis peels, a typical waste biomass and also to the methanolic extract of the medicinal plant Curcuma longa. In both cases, the methanolic extracts were profiled by NMR for a rapid estimation of the polyphenol versus primary metabolite content. An enriched secondary metabolites extract was obtained using vacuum liquid chromatography and submitted to bromination. Metabolite profiling performed by ultrahigh purity liquid chromatography time-of-flight high-resolution mass spectrometry revealed the presence of various halogenated products. To isolate these compounds, the reactions were scaled up, and six halogenated analogues were isolated and fully characterized by NMR and high-resolution electrospray ionization mass spectrometry analyses. The antibacterial properties of these compounds were evaluated using in vitro bioassays against multiresistant strains of Staphylococcus aureus and Pseudomonas aeruginosa. Some of the halogenated derivatives obtained presented moderate antibacterial properties.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge