English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of cellular biochemistry. Supplement 1997

Chemopreventive potential of thiol conjugates of isothiocyanates for lung cancer and a urinary biomarker of dietary isothiocyanates.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
F L Chung
D Jiao
C C Conaway
T J Smith
C S Yang
M C Yu

Keywords

Abstract

Natural and synthetic isothiocyanates (ITCs) are versatile chemopreventive agents in many animal systems. We have shown that phenethyl ITC (PEITC) and 6-phenylhexyl ITC (PHITC) are potent inhibitors against lung tumorigenesis induced by tobacco nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in both mouse and rat. The mechanism by which these ITCs inhibited lung tumorigenesis is attributed to their ability to decrease cytochrome P450 (P450) enzyme activities involved in the activation of NNK. Recently, we have found that thiol conjugates of ITCs inhibit P450 enzymes and are effective inhibitors of lung tumorigenesis. This is significant because conjugation with cellular thiols is the major route of ITC metabolism via the mercapturic acid pathway in rodents and humans. The thiol conjugates are less pungent and potentially less toxic, and they are more soluble and chemically less reactive than ITCs. These properties raise the prospect of substituting thiol conjugates for ITCs as chemopreventive agents. Furthermore, although ample rodent studies have established that ITCs inhibit tumorigenesis, the protective role of dietary ITCs against human cancers has not yet been established. As a prerequisite for such human studies, we have developed an HPLC-based assay, based on the condensation reaction of ITCs or conjugates with 1,2-benzenedithiol, for measuring a cyclocondensation product in human urine as an uptake biomarker of total ITCs. This assay was validated using urine samples from subjects who had ingested a known amount of watercress or mustard in a controlled diet. The assay is convenient and rapid, showing promise for analyzing urine samples obtained from population-based studies. Results from two such studies are presented to illustrate the potential application of this biomarker in epidemiologic studies.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge