English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Infection and Immunity 2014-Mar

Chlamydia trachomatis-infected epithelial cells and fibroblasts retain the ability to express surface-presented major histocompatibility complex class I molecules.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Danny Kägebein
Melanie Gutjahr
Christina Große
Annette B Vogel
Jürgen Rödel
Michael R Knittler

Keywords

Abstract

The obligate intracellular bacterial pathogen Chlamydia trachomatis is the causative agent of a variety of infectious diseases such as trachoma and sexually transmitted diseases. In infected target cells, C. trachomatis replicates within parasitophorous vacuoles and expresses the protease-like activity factor CPAF. Previous studies have suggested that CPAF degrades the host transcription factors RFX5 and NF-κB p65, which are involved in the regulation of constitutive and inducible expression of major histocompatibility complex class I (MHC I). It was speculated that Chlamydia suppresses the surface presentation of MHC I in order to evade an effective immune response. Nevertheless, a recent study suggested that RFX5 and NF-κB p65 may not serve as target substrates for CPAF-mediated degradation, raising concerns about the proposed MHC I subversion by Chlamydia. Hence, we investigated the direct influence of Chlamydia on MHC I expression and surface presentation in infected host cells. By using nine different human cells and cell lines infected with C. trachomatis (serovar D or LGV2), we demonstrate that chlamydial infection does not interfere with expression, maturation, transport, and surface presentation of MHC I, suggesting functional antigen processing in bacterium-infected cells. Our findings provide novel insights into the interaction of chlamydiae with their host cells and should be taken into consideration for the design of future therapies and vaccines.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge