English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 2014-Sep

Chlorophyll degradation: the tocopherol biosynthesis-related phytol hydrolase in Arabidopsis seeds is still missing.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Wei Zhang
Tianqi Liu
Guodong Ren
Stefan Hörtensteiner
Yongming Zhou
Edgar B Cahoon
Chunyu Zhang

Keywords

Abstract

Phytyl diphosphate (PDP) is the prenyl precursor for tocopherol biosynthesis. Based on recent genetic evidence, PDP is supplied to the tocopherol biosynthetic pathway primarily by chlorophyll degradation and sequential phytol phosphorylation. Three enzymes of Arabidopsis (Arabidopsis thaliana) are known to be capable of removing the phytol chain from chlorophyll in vitro: chlorophyllase1 (CLH1), CLH2, and pheophytin pheophorbide hydrolase (PPH), which specifically hydrolyzes pheophytin. While PPH, but not chlorophyllases, is required for in vivo chlorophyll breakdown during Arabidopsis leaf senescence, little is known about the involvement of these phytol-releasing enzymes in tocopherol biosynthesis. To explore the origin of PDP for tocopherol synthesis, seed tocopherol concentrations were determined in Arabidopsis lines engineered for seed-specific overexpression of PPH and in single and multiple mutants in the three genes encoding known dephytylating enzymes. Except for modestly increasing tocopherol content observed in the PPH overexpressor, none of the remaining lines exhibited significantly reduced tocopherol concentrations, suggesting that the known chlorophyll-derived phytol-releasing enzymes do not play major roles in tocopherol biosynthesis. Tocopherol content of seeds from double mutants in NONYELLOWING1 (NYE1) and NYE2, regulators of chlorophyll degradation, had modest reduction compared with wild-type seeds, although mature seeds of the double mutant retained significantly higher chlorophyll levels. These findings suggest that NYEs may play limited roles in regulating an unknown tocopherol biosynthesis-related phytol hydrolase. Meanwhile, seeds of wild-type over-expressing NYE1 had lower tocopherol levels, suggesting that phytol derived from NYE1-dependent chlorophyll degradation probably doesn't enter tocopherol biosynthesis. Potential routes of chlorophyll degradation are discussed in relation to tocopherol biosynthesis.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge