English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
BMC Plant Biology 2012-Apr

Chloroplastic Hsp100 chaperones ClpC2 and ClpD interact in vitro with a transit peptide only when it is located at the N-terminus of a protein.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Eduardo M Bruch
Germán L Rosano
Eduardo A Ceccarelli

Keywords

Abstract

BACKGROUND

Clp/Hsp100 chaperones are involved in protein quality control. They act as independent units or in conjunction with a proteolytic core to degrade irreversibly damaged proteins. Clp chaperones from plant chloroplasts have been also implicated in the process of precursor import, along with Hsp70 chaperones. They are thought to pull the precursors in as the transit peptides enter the organelle. How Clp chaperones identify their substrates and engage in their processing is not known. This information may lie in the position, sequence or structure of the Clp recognition motifs.

RESULTS

We tested the influence of the position of the transit peptide on the interaction with two chloroplastic Clp chaperones, ClpC2 and ClpD from Arabidopsis thaliana (AtClpC2 and AtClpD). The transit peptide of ferredoxin-NADP+ reductase was fused to either the N- or C-terminal end of glutathione S-transferase. Another fusion with the transit peptide interleaved between two folded proteins was used to probe if AtClpC2 and AtClpD could recognize tags located in the interior of a polypeptide. We also used a mutated transit peptide that is not targeted by Hsp70 chaperones (TP1234), yet it is imported at a normal rate. The fusions were immobilized on resins and the purified recombinant chaperones were added. After a washing protocol, the amount of bound chaperone was assessed. Both AtClpC2 and AtClpD interacted with the transit peptides when they were located at the N-terminal position of a protein, but not when they were allocated to the C-terminal end or at the interior of a polypeptide.

CONCLUSIONS

AtClpC2 and AtClpD have a positional preference for interacting with a transit peptide. In particular, the localization of the signal sequence at the N-terminal end of a protein seems mandatory for interaction to take place. Our results have implications for the understanding of protein quality control and precursor import in chloroplasts.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge