English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Anesthesiology 2000-Aug

Cholinesterase inhibition by potato glycoalkaloids slows mivacurium metabolism.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
D S McGehee
M D Krasowski
D L Fung
B Wilson
G A Gronert
J Moss

Keywords

Abstract

BACKGROUND

The duration of action for many pharmaceutical agents is dependent on their breakdown by endogenous hydrolytic enzymes. Dietary factors that interact with these enzyme systems may alter drug efficacy and time course. Cholinesterases such as acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) hydrolyze and inactivate several anesthetic drugs, including cocaine, heroin, esmolol, local ester anesthetics, and neuromuscular blocking drugs. Natural glycoalkaloid toxins produced by plants of the family Solanaceae, which includes potatoes and tomatoes, inhibit both AChE and BuChE. Here the authors assess the extent to which two solanaceous glycoalkaloids (SGAs), alpha-solanine and alpha-chaconine, can alter the effects of neuromuscular blocking drugs and cholinesterase inhibitors in vivo and in vitro.

METHODS

Inhibition of purified human AChE and BuChE by SGAs, neuromuscular blocking drugs, and cholinesterase inhibitors was assessed by an in vitro colorimetric cholinesterase assay. In vivo experiments were carried out using anesthetized rabbits to test whether SGAs affect recovery from mivacurium-induced paralysis.

RESULTS

SGAs inhibited human BuChE at concentrations similar to those found in serum of individuals who have eaten a standard serving of potatoes. Coapplication of SGAs (30-100 nm) with neuromuscular blocking drugs and cholinesterase inhibitors produced additive cholinesterase inhibition. SGA administration to anesthetized rabbits inhibited serum cholinesterase activity and mivacurium hydrolysis. In addition, SGA prolonged the time needed for recovery from mivacurium-induced paralysis (149 +/- 12% of control; n = 12).

CONCLUSIONS

These findings support the hypothesis that inhibition of endogenous enzyme systems by dietary factors can influence anesthetic drug metabolism and duration of action. Diet may contribute to the wide variation in recovery time from neuromuscular blockade seen in normal, healthy individuals.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge