English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Scientific Reports 2019-Sep

Chondro-protective effects of polydatin in osteoarthritis through its effect on restoring dysregulated autophagy via modulating MAPK, and PI3K/Akt signaling pathways.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Zhengyuan Wu
Zhiwei Luan
Xiaohan Zhang
Kai Zou
Shiting
Zhenyi Yang
Wenyu Feng
Mingwei He
Linhua Jiang
Jia Li

Keywords

Abstract

Osteoarthritis (OA) is a degenerative disease of the cartilage that is prevalent in the middle-aged and elderly demography. Polydatin (PD), a natural resveratrol glucoside, has shown significant anti-inflammatory and anti-arthritic potential in previous studies. This study was designed to evaluate the therapeutic properties of PD in vitro and in vivo, and elucidate their underlying mechanisms. The expression levels of all relevant factors were evaluated by qRT-PCR, western blotting, and immunohistochemistry (IHC) where suitable. Reactive oxygen species (ROS) and apoptosis were analyzed using the suitable probes and flow cytometry. The histological evidence of cartilage was assessed in rat models, moreover, the several serum cytokines levels and autophagy levels were evaluated. The result showed PD displayed significant chondro-protective effects, inferred in terms of reduced inflammation and cartilage degradation, apoptosis inhibition, and lower ROS production. The protective effects were attenuated by the autophagy inhibitor 3-MA, indicating a mediating role of autophagy in PD action. Mechanistically, PD exerted its effects by inhibiting the MAPK and PI3K/Akt signaling pathways which led to the down-regulation of mTOR. In conclusion, PD protects against cartilage degeneration by activating the autophagy flux in the chondrocytes via the MAPK and PI3K/Akt signaling pathways.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge