English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Chemosphere 2005-Feb

Chromium induced lipid peroxidation in the plants of Pistia stratiotes L.: role of antioxidants and antioxidant enzymes.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Sarita Sinha
Rohit Saxena
Shraddha Singh

Keywords

Abstract

In the plant, Pistia stratiotes L., the effect of different concentrations of chromium (0, 10, 40, 80 and 160 microM) applied for 48, 96 and 144 h was assessed by measuring changes in the chlorophyll, protein, malondialdehyde (MDA), cysteine, non-protein thiol, ascorbic acid contents and superoxide dismutase (SOD), ascorbate peroxidase (APX) and guiacol peroxidase (GPX) activity of the plants. Both in roots and leaves, an increase in MDA content was observed with increase in metal concentration and exposure periods. In roots, the activity of antioxidant enzymes viz. SOD and APX increased at all the concentrations of Cr at 144 h than their controls. The GPX activity of the treated roots increased with increase in Cr concentration at 48 and 96 h of exposures, however, at 144 h its activity was found declined beyond 10 microM Cr. The level of antioxidants in the roots of the treated plant viz. cysteine and ascorbic acid was also found increased at all the concentrations of Cr at 144 h than their respective controls, however, an increase in the non-protein thiol content was recorded up to 40 microM Cr followed by decrease. The chlorophyll content decreased with increase in Cr concentrations and exposure periods. However, the protein content of both roots and leaves were found decreased with increase in Cr concentrations at all the exposure periods except an increase was recorded at 10 microM Cr at 48 h. In Cr treated plants, the no observed effect concentration (NOEC) and lowest observed effect concentration (LOEC) for leaves chlorophyll and protein contents were 40 and 80 microM Cr, respectively after 48 h exposure while NOEC and LOEC for root protein content were 10 and 40 microM, respectively after 48 h. The analysis of correlation coefficient data revealed that the metal accumulation in the roots of the plant was found positively correlated with antioxidant parameters except SOD after 48 h of exposure, however, negatively correlated with most of all the parameters studied at 144 h in both part of the plant. It may be suggested from the present study that toxic concentrations of Cr cause oxidative damage as evidenced by increased lipid peroxidation and decreased chlorophyll and protein contents. However, the higher levels of enzymatic and non-enzymatic antioxidants suggest the reason for tolerating higher levels of metals.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge