English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Applied Physiology 2006-Apr

Chronic antioxidant enzyme mimetic treatment differentially modulates hyperthermia-induced liver HSP70 expression with aging.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Hannah J Zhang
Susan R Doctrow
Larry W Oberley
Kevin C Kregel

Keywords

Abstract

One postulated mechanism for the reduction in stress tolerance with aging is a decline in the regulation of stress-responsive genes, such as inducible heat shock protein 72 (HSP70). Increased levels of oxidative stress are also associated with aging, but it is unclear what impact a prooxidant environment might have on HSP70 gene expression. This study utilized a superoxide dismutase/catalase mimetic (Eukarion-189) to evaluate the impact of a change in redox environment on age-related HSP70 responses to a physiologically relevant heat challenge. Results demonstrate that liver HSP70 mRNA and protein levels are reduced in old compared with young rats at selected time points over a 48-h recovery period following a heat-stress protocol. While chronic systemic administration of Eukarion-189 suppressed hyperthermia-induced liver HSP70 mRNA expression in both age groups, HSP70 protein accumulation was blunted in old rats but not in their young counterparts. These data suggest that a decline in HSP70 mRNA levels may be responsible for the reduction in HSP70 protein observed in old animals after heat stress. Furthermore, improvements in redox status were associated with reduced HSP70 mRNA levels in both young and old rats, but differential effects were manifested on protein expression, suggesting that HSP70 induction is differentially regulated with aging. These findings highlight the integrated mechanisms of stress protein regulation in eukaryotic organisms responding to environmental stress, which likely involve interactions between a wide range of cellular signals.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge