English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Neurochemistry 1999-Dec

Chronic delta9-tetrahydrocannabinol treatment produces a time-dependent loss of cannabinoid receptors and cannabinoid receptor-activated G proteins in rat brain.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
C S Breivogel
S R Childers
S A Deadwyler
R E Hampson
L J Vogt
L J Sim-Selley

Keywords

Abstract

Chronic treatment of rats with delta9-tetrahydrocannabinol (delta9-THC) results in tolerance to its acute behavioral effects. In a previous study, 21-day delta9-THC treatment in rats decreased cannabinoid activation of G proteins in brain, as measured by in vitro autoradiography of guanosine-5'-O-(3-[35S]thiotriphosphate) ([35S]GTPgammaS) binding. The present study investigated the time course of changes in cannabinoid-stimulated [35S]GTPgammaS binding and cannabinoid receptor binding in both brain sections and membranes, following daily delta9-THC treatments for 3, 7, 14, and 21 days. Autoradiographic results showed time-dependent decreases in WIN 55212-2-stimulated [35S]GTPgammaS and [3H]WIN 55212-2 binding in cerebellum, hippocampus, caudate-putamen, and globus pallidus, with regional differences in the rate and magnitude of down-regulation and desensitization. Membrane binding assays in these regions showed qualitatively similar decreases in WIN 55212-2-stimulated [35S]GTPgammaS binding and cannabinoid receptor binding (using [3H]SR141716A), and demonstrated that decreases in ligand binding were due to decreases in maximal binding values, and not ligand affinities. These results demonstrated that chronic exposure to delta9-THC produced time-dependent and region-specific down-regulation and desensitization of brain cannabinoid receptors, which may represent underlying biochemical mechanisms of tolerance to cannabinoids.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge