English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
American Journal of Physiology - Cell Physiology 2007-Jun

Chronic intermittent hypoxia alters Ca2+ handling in rat cardiomyocytes by augmented Na+/Ca2+ exchange and ryanodine receptor activities in ischemia-reperfusion.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Hang Mee Yeung
Gennadi M Kravtsov
Kwong Man Ng
Tak Ming Wong
Man Lung Fung

Keywords

Abstract

This study examined Ca(2+) handling mechanisms involved in cardioprotection induced by chronic intermittent hypoxia (CIH) against ischemia-reperfusion (I/R) injury. Adult male Sprague-Dawley rats were exposed to 10% inspired O(2) continuously for 6 h daily from 3, 7, and 14 days. In isolated perfused hearts subjected to I/R, CIH-induced cardioprotection was most significant in the 7-day group with less infarct size and lactate dehydrogenase release, compared with the normoxic group. The I/R-induced alterations in diastolic Ca(2+) level, amplitude, time-to-peak, and the decay time of both electrically and caffeine-induced Ca(2+) transients measured by spectrofluorometry in isolated ventricular myocytes of the 7-day CIH group were less than that of the normoxic group, suggesting an involvement of altered Ca(2+) handling of the sarcoplasmic reticulum (SR) and sarcolemma. We further determined the protein expression and activity of (45)Ca(2+) flux of SR-Ca(2+)-ATPase, ryanodine receptor (RyR) and sarcolemmal Na(+)/Ca(2+) exchange (NCX) in ventricular myocytes from the CIH and normoxic groups before and during I/R. There were no changes in expression levels of the Ca(2+)-handling proteins but significant increases in the RyR and NCX activities were remarkable during I/R in the CIH but not the normoxic group. The augmented RyR and NCX activities were abolished, respectively, by PKA inhibitor (0.5 microM KT5720 or 0.5 microM PKI(14-22)) and PKC inhibitor (5 microM chelerythrine chloride or 0.2 microM calphostin C) but not by Ca(2+)/calmodulin-dependent protein kinase II inhibitor KN-93 (1 microM). Thus, CIH confers cardioprotection against I/R injury in rat cardiomyocytes by altered Ca(2+) handling with augmented RyR and NCX activities via protein kinase activation.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge