English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Scientia Pharmaceutica 2017-Jan

Chrysin Protects Rat Kidney from Paracetamol-Induced Oxidative Stress, Inflammation, Apoptosis, and Autophagy: A Multi-Biomarker Approach.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Fatih Mehmet Kandemir
Sefa Kucukler
Eyup Eldutar
Cuneyt Caglayan
İlhami Gülçin

Keywords

Abstract

Paracetamol (PC) is a safe analgesic and antipyretic drug at therapeutic doses, and it is widely used in clinics. However, at high doses, it can induce hepatotoxicity and nephrotoxicity. Chrysin (CR) is a natural flavonoid that has biological activities that include being an antioxidant, an anti-inflammatory, and an anti-cancer agent. The main objective of this study was to investigate the efficacy of CR against PC-induced nephrotoxicity in rats. CR was given orally via feeding needle to male Sprague Dawley rats as a single daily dose of 25 or 50 mg/kg for six days. PC was administered orally via feeding needle as a single dose on the sixth day. PC caused significant glutathione depletion, lipid peroxidation, increased serum toxicity markers (serum urea and creatinine), and reductions in activities of antioxidant enzymes (superoxide dismutase - SOD, catalase - CAT, and glutathione peroxidase - GPx). The renal protective effect of CR was associated with decreasing the regulation of serum renal toxicity markers and increasing the regulation of antioxidant enzyme activities. Additionally, PC led to significant increases in the levels of inflammatory markers including tumour necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β) and interleukin-33 (IL-33). Furthermore, PC induced apoptotic tissue damage by increasing cysteine aspartate-specific protease-3 (caspase-3) activity and autophagic tissue damage by increasing the expression of light chain 3B (LC3B). CR therapy significantly decreased these values in rats. This study demonstrated that CR has antioxidant, anti-apoptotic, anti-inflammatory and anti-autophagic effects on PC-induced kidney toxicity in rats.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge