English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Laboratory Investigation 2018-Jun

Cinnamaldehyde accelerates wound healing by promoting angiogenesis via up-regulation of PI3K and MAPK signaling pathways.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Xing Yuan
Lin Han
Peng Fu
Huawu Zeng
Chao Lv
Wanlin Chang
R Scott Runyon
Momoko Ishii
Liwen Han
Kechun Liu

Keywords

Abstract

The bark of Cinnamomum cassia (C. cassia) has been used for the management of coronary heart disease (CHD) and diabetes mellitus. C. cassia may target the vasculature, as it stimulates angiogenesis, promotes blood circulation and wound healing. However, the active components and working mechanisms of C. cassia are not fully elucidated. The Shexiang Baoxin pill (SBP), which consists of seven medicinal materials, including C. cassia etc., is widely used as a traditional Chinese patent medicine for the treatment of CHD. Here, 22 single effective components of SBP were evaluated against the human umbilical vein endothelial cells (HUVECs). We demonstrated that in HUVECs, cinnamaldehyde (CA) stimulated proliferation, migration, and tube formation. CA also activated the phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways. Furthermore, the secretion of vascular endothelial growth factor (VEGF) from HUVECs was increased by CA. In vivo, CA partially restored intersegmental vessels in zebrafish pretreated with PTK787, which is a selective inhibitor for vascular endothelial growth factor receptor (VEGFR). CA also showed pro-angiogenic efficacy in the Matrigel plug assay. Additionally, CA attenuated wound sizes in a cutaneous wound model, and elevated VEGF protein and CD31-positive vascular density at the margin of these wounds. These results illustrate that CA accelerates wound healing by inducing angiogenesis in the wound area. The potential mechanism involves activation of the PI3K/AKT and MAPK signaling pathways. Such a small non-peptide molecule may have clinical applications for promoting therapeutic angiogenesis in chronic diabetic wounds and myocardial infarction.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge