English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Current Diabetes Reviews 2016

Classification of Therapeutic and Experimental Drugs for Brown Adipose Tissue Activation: Potential Treatment Strategies for Diabetes and Obesity.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Jogeshwar Mukherjee
Aparna Baranwal
Kimberly N Schade

Keywords

Abstract

OBJECTIVE

Increasing efforts are being made towards pharmacologic activation of brown adipose tissue (BAT) in animals and humans for potential use in the treatment of obesity and diabetes. We and others have reported a number of animal studies using either experimental or therapeutic drugs. There are now efforts to translate these findings to human studies. The goal of this review is to evaluate the various drugs currently being used that have the potential for BAT activation.

METHODS

Drugs were classified into 4 classes based on their mechanism of action. Class 1 drugs include the use of β3 adrenoceptor agonists for BAT activation. Class 2 drugs include drugs that affect norepinephrine levels and activate BAT with the potential of reducing obesity. Class 3 includes activators of peroxisome proliferator-activated receptor-γ in pursuit of lowering blood sugar, weight loss and diabetes and finally Class 4 includes natural products and other emerging drugs with limited information on BAT activation and their effects on diabetes and weight loss.

RESULTS

Class 1 drugs are high BAT activators followed by Class 2 and 3. Some of these drugs have now been extended to diabetes and obesity animal models and human BAT studies. Drugs in Class 3 are used clinically for Type 2 diabetes, but the extent of BAT involvement is unclear.

CONCLUSIONS

Further studies on the efficacy of these drugs in diabetes and measuring their effects on BAT activation using noninvasive imaging will help in establishing a clinical role of BAT.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge