English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Clinical and Experimental Pharmacology and Physiology 2019-Nov

Clematichinenoside protects renal tubular epithelial cells from hypoxia/reoxygenation injury in vitro through activating the Nrf2/HO-1 signaling pathway.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Jie Feng
Ranran Kong
Liyi Xie
Wanhong Lu
Yali Zhang
Hongjuan Dong
Hongli Jiang

Keywords

Abstract

Renal ischemia/reperfusion (I/R) is a major cause of acute renal failure with increased morbidity, mortality, and prolonged hospitalizations. Clematichinenoside (AR), a triterpenoid saponin isolated from the roots of Clematis chinensis, was reported to possess protective effect against I/R injury. However, the effect of AR on renal I/R injury has not been evaluated. This study was aimed to examine the effect of AR on in vitro I/R model in human proximal tubular epithelial cells HK-2. HK-2 cells were subjected to hypoxia/reoxygenation (H/R) stimulation to mimic I/R in vitro. The results showed that AR improved cell viability of H/R-stimulated HK-2 cells. AR pretreatment resulted in decreased production of reactive oxygen species (ROS) and malondialdehyde (MDA), as well as increased in superoxide dismutase (SOD) activity in H/R-stimulated HK-2 cells. In addition, AR also presented an anti-inflammatory activity, as evidenced by decreased secretion of pro-inflammatory cytokines including IL-6, IL-1β, and TNF-α. Moreover, apoptotic rate was markedly decreased in HK-2 cells pretreated with AR. The bax expression was decreased, while bcl-2 expression was increased by AR pretreatment. Furthermore, AR enhanced the H/R-stimulated activation of Nrf2/HO-1 signaling pathway in HK-2 cells. In conclusion, these findings indicated that AR protected HK-2 cells from H/R-induced cell injury via regulating the Nrf2/HO-1 signaling pathway.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge