English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Sub-Cellular Biochemistry 2015

Clinical Forms and Animal Models of Hypophosphatasia.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Jean Pierre Salles

Keywords

Abstract

Hypophosphatasia (HPP) is due to mutations of the tissue non-specific alkaline phosphatase (TNAP) gene expressed in the liver, kidney, and bone. TNAP substrates include inorganic pyrophosphate cleaved into inorganic phosphate (Pi) in bone, pyridoxal-5'-phosphate (PLP), the circulating form of vitamin B6, and phosphoethanolamine (PEA). As an autosomal recessive or dominant disease, HPP results in a range of clinical forms. Its hallmarks are low alkaline phosphatase (AP) and elevated PLP and PEA levels. Perinatal HPP may cause early death with respiratory insufficiency and hypomineralization resulting in deformed limbs and sometimes near-absence of bones and skull. Infantile HPP is diagnosed before 6 months of life. Respiratory failure, rib fractures and seizures due to vitamin B6 deficiency in the brain indicate poor prognosis. Craniosynostosis is frequent. Unlike in other forms of rickets, calcium and phosphorus are not decreased, resulting in hypercalciuria and nephrocalcinosis. Hypercalcemic crisis may occur. Failure to thrive and growth retardation are concerns. In infantile and adult forms of HPP, non-traumatic fractures may be the prominent manifestation, with otherwise unexplained chronic pain. Progressive myopathy has been described. Dental manifestations with early loss of teeth are usual in HPP and in a specific form, odontohypophosphatasia. HPP has been studied in knock-out mice models which mimic its severe form. Animal models have made a major contribution to the development of an original enzyme therapy for human infantile HPP, which is however essentially targeted at mineralized tissues. Better knowledge of its extraskeletal manifestations, including pain and neurological symptoms, is therefore required.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge