English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Tree Physiology 1991-Apr

Clonal variation of Populus tremuloides responses to diurnal drought stress.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
D H Griffin
M Schaedle
M J DeVit
P D Manion

Keywords

Abstract

We have developed an automated microprocessor controlled system for subjecting hydroponically grown plants to drought. Pumps and valves were used to move nutrient solutions into and out of a system of culture vessels in a growth chamber to provide periods of drought. Drought conditions were obtained by exposing the roots of hydroponically grown clones of aspen, Populus tremuloides Michx., to air in culture vessels temporarily emptied of nutrient medium. Over a 3-week period, the daily duration of drought was increased from 0 to 6 h. During this period, the plants became increasingly tolerant to drought, as shown by a decreasing propensity to wilt. All three clones sustained diurnal drought periods of 6 h for up to 5 weeks without detectable deterioration of health. Typical drought stress symptoms were observed including inhibition of growth, increased tissue amino acid content, and decreased water, solute, and turgor potentials in young leaves. In all clones, control plants had leaf water potentials between -1.0 and -1.6 MPa, whereas leaf water potentials of drought-treated plants were significantly lower, ranging from -1.7 to -3.0 MPa. Only one of the clones showed a significant decrease in leaf solute potential in response to drought. The decrease in leaf solute potential paralleled the decrease in water potential resulting in no significant difference in turgor potential. The other two clones had nonsignificant decreases to more negative leaf solute potentials under drought conditions resulting in significantly lowered turgor potentials. Leaf water potentials, solute potentials, and turgor potentials of the drought-treated plants returned to control values within two hours after rewatering. The growth inhibitions observed could not have been the consequence of loss of turgor. These results demonstrate genetic differences among aspen clones in water relations responses to drought.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge