English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Yao xue xue bao = Acta pharmaceutica Sinica 2008-Dec

[Cloning and characterization of cDNA encoding Psammosilene tunicoides squalene synthase].

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Zhu-bo Dai
Zi-gang Qian
Yun-qian Hu
Lu-qi Huang

Keywords

Abstract

The total triterpene saponins of Psammosilene tunicoides have significant pharmacologic activity. Psammosilene tunicoides squalene synthase (PSS) is a gateway enzyme to regulate the biosynthesis of total triterpene saponins extracted from the root of Psammosilene tunicoides which is an endangered species. In this paper, cDNA encoding of PSS was cloned by the degenerate primer PCR and rapid-amplification of cDNA ends (RACE). The full-length of cDNA of PSS is 1663 bp, with an open reading frame (ORF) of 1 245 bp, encoding 414 amino acid polypeptide (calculated molecular mass, 47.69 kDa), 5'UTR (untranslated region) and 3'UTR are 260 bp and 158 bp, respectively. The deduced amino acid sequence of PSS has higher homology with the known squalene synthases of several species such as Panax notoginseng (83%), Panax ginseng (82%) and Glycyrrhiza glabra (82%) than that with Schizosacharomyces pombe (35%), Candida albicans (39%) and Homo sapiens (47%). The characterization of PSS was done by a series of methods, such as prokaryotic expression, the activity of enzyme in vitro, capillary gas chromatography (GC) and capillary gas chromatography mass spectrometry (GC-MS). The results showed that the cell-free extract of E. coli transformed with the recombinant plasmid can effectively convert farnesyl diphosphate into squalene in vitro. GenBank accession number is EF585250. Our research provided important base for the study of Psammosilene tunicoides secondary metabolism and metabolic engineering.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge