English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Journal 1998-Apr

Cloning and functional expression of AtCOQ3, the Arabidopsis homologue of the yeast COQ3 gene, encoding a methyltransferase from plant mitochondria involved in ubiquinone biosynthesis.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
M H Avelange-Macherel
J Joyard

Keywords

Abstract

A mutant of Saccharomyces cerevisiae deleted for the COQ3 gene was constructed. COQ3 encodes a 3,4-dihydroxy-5-hexaprenylbenzoate (DHHB) methyltransferase that catalyses the fourth step in the biosynthesis of ubiquinone from p-hydroxybenzoic acid. A full length cDNA encoding a homologue of DHHB-methyltransferase was cloned from an Arabidopsis thaliana cDNA library by functional complementation of a yeast coq3 deletion mutant. The Arabidopsis thaliana cDNA (AtCOQ3) was able to restore the respiration ability and ubiquinone synthesis of the mutant. The product of the 1372 bp cDNA contained 322 amino acids and had a molecular mass of 35,360 Da. The predicted amino acid sequence contained all consensus regions for S-adenosyl methionine methyltransferases and presented 26% identity with Saccharomyces cerevisiae DHHB-methyltransferase and 38% identity with the rat protein, as well as with a bacterial (Escherichia coli and Salmonella typhimurium) methyltransferase encoded by the UBIG gene. Southern analysis showed that the Arabidopsis thaliana enzyme was encoded by a single nuclear gene. The NH2-terminal part of the cDNA product contained features consistent with a putative mitochondrial transit sequence. The cDNA in Escherichia coli was overexpressed and antibodies were raised against the recombinant protein. Western blot analysis of Arabidopsis thaliana and pea protein extracts indicated that the AtCOQ3 gene product is localized within mitochondrial membranes. This result suggests that at least this step of ubiquinone synthesis takes place in mitochondria.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge