English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biomaterials 2014-Jul

Co-delivery of doxorubicin and RNA using pH-sensitive poly (β-amino ester) nanoparticles for reversal of multidrug resistance of breast cancer.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Shan Tang
Qi Yin
Zhiwen Zhang
Wangwen Gu
Lingli Chen
Haijun Yu
Yongzhuo Huang
Xianzhi Chen
Minghua Xu
Yaping Li

Keywords

Abstract

An appropriate co-delivery system for chemotherapeutic agents and nucleic acid drugs will provide a more efficacious approach for the treatment of breast cancer by reversing multidrug resistance (MDR). In this work, a new amphiphilic poly (β-amino ester), poly[(1,4-butanediol)-diacrylate-β-5-polyethylenimine]-block-poly[(1,4-butanediol)-diacrylate-β-5-hydroxy amylamine] (PDP-PDHA) was synthesized, and the doxorubicin (DOX) and survivin-targeting shRNA (shSur) co-loading nanoparticle (PDNs) were prepared. The pH-sensitive poly[(1,4-butanediol) diacrylate-β-5-hydroxy amylamine] (PDHA) endowed PDNs both pH-triggered drug release characteristics and enhanced endo/lysosomal escape ability, thus improving the cytotoxicity of DOX and the transfection efficiency. PDNs also increased the DOX accumulation, down-regulated 57.7% survivin expression, induced 80.8% cell apoptosis and changed the cell cycle in MCF-7/ADR cells. In the MCF-7/ADR tumor-bearing mice models, after administrated intravenously, PDNs raised the accumulation of DOX and shSur in the tumor tissue by 10.4 and 20.2 folds, respectively, resulting in obvious inhibition of the tumor growth with tumor inhibiting rate of 95.9%. The combination of DOX and RNA interference showed synergistic effect on overcoming MDR. Therefore, PDNs could be a promising co-delivery vector for effective therapy of drug resistant breast cancer.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge