English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Cerebral Blood Flow and Metabolism 2008-Feb

Coaccumulation of calcium and beta-amyloid in the thalamus after transient middle cerebral artery occlusion in rats.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Susanna Mäkinen
Thomas van Groen
Jared Clarke
Anders Thornell
Dale Corbett
Mikko Hiltunen
Hilkka Soininen
Jukka Jolkkonen

Keywords

Abstract

Transient occlusion of the middle cerebral artery (MCAO) in rats leads to abnormal accumulation of beta-amyloid (Abeta) peptides in the thalamus. This study investigated the chemical composition of these deposits. Adult male human beta-amyloid precursor protein (APP) overexpressing (hAPP695) rats and their wild-type littermates were subjected to transient MCAO for 2 h or sham operation. After 26-week survival time, histological examination revealed an overlapping distribution pattern for rodent and human Abeta in the thalamus of hAPP695 rats subjected to MCAO. X-ray microanalysis showed that the deposits did not contain significant amount of iron, zinc, or copper typical to senile plaques. In contrast, the deposit both in hAPP695 and non-transgenic rats contained calcium and phosphorus in a ratio (1.28+/-0.15) characteristic to hydroxyapatites. Alizarin red staining confirmed that calcium coaccumulated in these Abeta deposits. It is suggested that APP expression is induced by ischemic insult in cortical neurons adjacent to infarct, which in turn is reflected as increased release of Abeta peptides by their corticothalamic axon endings. This together with insufficient clearance or atypical degradation of Abeta peptides lead to dysregulation of calcium homeostatis and coaccumulation in the thalamus.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge