English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Biology Reports 2014-Feb

Cold acclimation induces freezing tolerance via antioxidative enzymes, proline metabolism and gene expression changes in two chrysanthemum species.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Yu Chen
Jiafu Jiang
Qingshan Chang
Chunsun Gu
Aiping Song
Sumei Chen
Bin Dong
Fadi Chen

Keywords

Abstract

Cold acclimation is necessary for chrysanthemum to achieve its genetically determined maximum freezing tolerance, but the underlying physiological and molecular mechanisms are unclear. The aim of this study was to discover whether changes in antioxidative enzymes, proline metabolism and frost-related gene expression induced by cold acclimation are related to freezing tolerance. Our results showed that the semi-lethal temperature (LT50) decreased from -7.3 to -23.5 °C in Chrysanthemum dichrum and -2.1 to -7.1 °C in Chrysanthemum makinoi, respectively, after cold acclimation for 21 days. The activities of SOD, CAT and APX showed a rapid and transient increase in the two chrysanthemum species after 1 day of cold acclimation, followed by a gradual increase during the subsequent days and then stabilization. qRT-PCR analysis showed that the expression levels of some isozyme genes (Mn SOD, CAT and APX) were upregulated, which was consistent with the SOD, CAT and APX activities, while others remained relatively constant (Fe SOD and Cu/Zn SOD). P5CS and PDH expression were increased under cold acclimation and the level of P5CS presented similar trends as proline content, indicating proline accumulation was via P5CS and PDH cooperation. Cold acclimation also promoted DREB, COR413 and CSD gene expression. The activities of three enzymes and gene expression were higher in C. dichrum than in C. makinoi after cold acclimation. Our data suggested that cold-inducible freezing-tolerance could be attributed to higher activity of antioxidant enzymes, and increased proline content and frost-related gene expression during different periods.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge