English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Physiologia Plantarum 2003-May

Cold- and light-induced changes of metabolite and antioxidant levels in two high mountain plant species Soldanella alpina and Ranunculus glacialis and a lowland species Pisum sativum.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Peter Streb
Serge Aubert
Elisabeth Gout
Richard Bligny

Keywords

Abstract

Leaves of the two cold-acclimated alpine plant species Ranunculus glacialis and Soldanella alpina and, for comparison, of the non-acclimated lowland species Pisum sativum were illuminated with high light intensity at low temperature. The light- and cold-induced changes of antioxidants and of the major carbon and phosphate metabolites were analysed to examine which metabolic pathways might be limiting in non-acclimated pea leaves and whether alpine plants are able to circumvent such limitation. During illumination at low temperature pea leaves accumulated high quantities of sucrose, glucose-6-phosphate, fructose-6-phosphate, mannose-6-phosphate and phosphoglycerate (PGA) whereas ATP/ADP-ratios decreased. Although the PGA content also increased in leaves of R. glacialis the other metabolites did not accumulate and ATP/ADP-ratios remained fairly constant in either alpine species. These data indicate a inorganic phosphate (Pi)-limitation in the chloroplasts of pea leaves but not in the alpine species. However, the total phosphate pool and the percentage of free Pi were highest in pea and did not change during illumination in cold. In contrast, free Pi contents declined markedly in R. glacialis leaves, suggesting that Pi is available for metabolism in this species. In S. alpina leaves contents of ascorbate and glutathione doubled in light and cold, while the contents of sugars did not increase. Obviously, S. alpina leaves can use assimilated carbon for ascorbate synthesis, rather than for the synthesis of sugars. A high capacity for ascorbate synthesis might prevent the accumulation of mannose-6-phosphate and Pi-limitation.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge