English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
ACS Sensors 2019-Apr

Colorimetric Detection of Salivary α-Amylase Using Maltose as a Noncompetitive Inhibitor for Polysaccharide Cleavage.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Iuna Tsyrulneva
Palaniappan Alagappan
Bo Liedberg

Keywords

Abstract

This paper describes an approach for colorimetric detection of salivary α-amylase, one of the potential biomarkers of autonomic nervous system (ANS) activity, for enabling assessment of fatigue. The ability of α-amylase to cleave α-bonds of polysaccharides is utilized for developing a colorimetric assay. In the proposed approach, 2-chloro-4-nitrophenyl-α-d-maltotrioside as substrate releases a colored byproduct upon cleavage by salivary α-amylase. Introduction of maltose as a noncompetitive inhibitor yields desirable linear responses in the physiologically relevant concentration range (20-500 μg/mL) with a limit of detection (LOD) of 8 μg/mL (in aqueous solution). The concentrations of substrate and noncompetitive inhibitor are subsequently optimized for colorimetric detection of salivary α-amylase. A facile paper-based "strip" assay is proposed for analysis of human saliva samples with marginal interference from saliva components. The proposed assay is rapid, specific, and easy-to-implement for colorimetric detection of salivary α-amylase between 20 and 500 μg/mL. Complementary RGB (red, green, blue components) analysis offers quantitative detection with a LOD of 11 μg/mL. The two assay formats are benchmarked against the Phadebas test, a state of the art method for spectrophotometric detection of α-amylase. The reported paper-based methodology possesses a high potential for estimation of altered ANS responses toward stressors that possibly could find applications in assessment of fatigue and for monitoring onset of fatigue.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge