English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Chemical Ecology 2008-Oct

Combined effect of intercropping and turnip root fly (Delia floralis) larval feeding on the glucosinolate concentrations in cabbage roots and foliage.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Maria Björkman
Richard J Hopkins
Birgitta Rämert

Keywords

Abstract

The effects of plant competition and herbivory on glucosinolate concentrations in cabbage root and foliage were investigated in a cabbage-red clover intercropping system. Cabbage plants were grown under different competitive pressures and with varying degrees of attack by root-feeding Delia floralis larvae. Glucosinolate concentrations in cabbage were affected both by intercropping and by D. floralis density. Glucosinolate concentrations in foliage generally decreased as a response to intercropping, while the responses to insect root damage of individual glucosinolates were weaker. Root glucosinolates responded more strongly to both intercropping and egg density. Total root glucosinolate concentration decreased with clover density, but only at high egg densities. Increased egg density led to opposite reactions by the indole and aliphatic glucosinolates in roots. The responses of individual root glucosinolates to competition and root damage were complex and, on occasion, nonlinear. Reduced concentrations of several glucosinolates and the tendency towards a decrease in total concentration in cabbage foliage caused by intercropping and larval damage suggest that competing plants or plants with root herbivory do not allocate the same resources as unchallenged plants towards sustaining levels of leaf defensive compounds. This could also be true for root glucosinolate concentrations at high egg densities. In addition, the results suggest that changes occurring within a structural group of glucosinolates may be influenced by changes in a single compound, e.g., glucobrassicin (indol-3-ylmethyl) in foliage or sinigrin (2-propenyl) in roots.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge