English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Science 2015-Nov

Comparative analysis of the drought-responsive transcriptome in soybean lines contrasting for canopy wilting.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Silvas J Prince
Trupti Joshi
Raymond N Mutava
Naeem Syed
Maldonado Dos Santos Joao Vitor
Gunvant Patil
Li Song
JiaoJiao Wang
Li Lin
Wei Chen

Keywords

Abstract

Drought stress causes significant yield losses in major oil seed crops, such as soybean [Glycine max (L.) Merr]. Few soybean lines have been identified as canopy-wilting tolerant; however, the molecular mechanism conferring tolerance is not fully understood. To understand the biological process, a whole genome transcriptome analysis was performed for leaf tissues of two contrasting soybean lines: drought-susceptible (DS) Pana and drought-tolerant (DT) PI 567690. A pairwise comparison of the DS and DT lines under drought and control conditions detected 1914 and 670 genes with a greater than two-fold change in expression under drought conditions. Pairwise treatment comparison and gene enrichment analysis on the DT line showed the down-regulation of genes associated with protein binding, hydrolase activity, carbohydrate/lipid metabolism, xyloglucan endo-transglycosylases associated with cell-wall, apoplast, and chlorophyll a/b binding proteins. On the other hand, genes that were associated with the biotic stress response, ion binding and transport, the oxido-reductive process and electron carrier activity were up-regulated. Gene enrichment analysis detected UDP glucuronosyl transferase activity-encoding genes to be differentially expressed in PI 567690 under drought stress conditions. We found valuable SNPs variation in aquaporin genes of the DT line that are conserved in known slower canopy-wilting lines, this should facilitate marker-assisted selection in soybeans with improved drought tolerance.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge